Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
NPJ Parkinsons Dis ; 10(1): 76, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570511

RESUMEN

Dementia with Lewy bodies (DLB) is a neurodegenerative condition often co-occurring with Alzheimer's disease (AD) pathology. Characterizing white matter tissue microstructure using Neurite Orientation Dispersion and Density Imaging (NODDI) may help elucidate the biological underpinnings of white matter injury in individuals with DLB. In this study, diffusion tensor imaging (DTI) and NODDI metrics were compared in 45 patients within the dementia with Lewy bodies spectrum (mild cognitive impairment with Lewy bodies (n = 13) and probable dementia with Lewy bodies (n = 32)) against 45 matched controls using conditional logistic models. We evaluated the associations of tau and amyloid-ß with DTI and NODDI parameters and examined the correlations of AD-related white matter injury with Clinical Dementia Rating (CDR). Structural equation models (SEM) explored relationships among age, APOE ε4, amyloid-ß, tau, and white matter injury. The DLB spectrum group exhibited widespread white matter abnormalities, including reduced fractional anisotropy, increased mean diffusivity, and decreased neurite density index. Tau was significantly associated with limbic and temporal white matter injury, which was, in turn, associated with worse CDR. SEM revealed that amyloid-ß exerted indirect effects on white matter injury through tau. We observed widespread disruptions in white matter tracts in DLB that were not attributed to AD pathologies, likely due to α-synuclein-related injury. However, a fraction of the white matter injury could be attributed to AD pathology. Our findings underscore the impact of AD pathology on white matter integrity in DLB and highlight the utility of NODDI in elucidating the biological basis of white matter injury in DLB.

2.
Mol Pharm ; 21(5): 2176-2186, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38625027

RESUMEN

The blood-brain barrier (BBB) is instrumental in clearing toxic metabolites from the brain, such as amyloid-ß (Aß) peptides, and in delivering essential nutrients to the brain, like insulin. In Alzheimer's disease (AD) brain, increased Aß levels are paralleled by decreased insulin levels, which are accompanied by insulin signaling deficits at the BBB. Thus, we investigated the impact of insulin-like growth factor and insulin receptor (IGF1R and IR) signaling on Aß and insulin trafficking at the BBB. Following intravenous infusion of an IGF1R/IR kinase inhibitor (AG1024) in wild-type mice, the BBB trafficking of 125I radiolabeled Aß peptides and insulin was assessed by dynamic SPECT/CT imaging. The brain efflux of [125I]iodo-Aß42 decreased upon AG1024 treatment. Additionally, the brain influx of [125I]iodoinsulin, [125I]iodo-Aß42, [125I]iodo-Aß40, and [125I]iodo-BSA (BBB integrity marker) was decreased, increased, unchanged, and unchanged, respectively, upon AG1024 treatment. Subsequent mechanistic studies were performed using an in vitro BBB cell model. The cell uptake of [125I]iodoinsulin, [125I]iodo-Aß42, and [125I]iodo-Aß40 was decreased, increased, and unchanged, respectively, upon AG1024 treatment. Further, AG1024 reduced the phosphorylation of insulin signaling kinases (Akt and Erk) and the membrane expression of Aß and insulin trafficking receptors (LRP-1 and IR-ß). These findings reveal that insulin signaling differentially regulates the BBB trafficking of Aß peptides and insulin. Moreover, deficits in IGF1R and IR signaling, as observed in the brains of type II diabetes and AD patients, are expected to increase Aß accumulation while decreasing insulin delivery to the brain, which has been linked to the progression of cognitive decline in AD.


Asunto(s)
Péptidos beta-Amiloides , Barrera Hematoencefálica , Insulina , Receptor IGF Tipo 1 , Receptor de Insulina , Transducción de Señal , Barrera Hematoencefálica/metabolismo , Animales , Péptidos beta-Amiloides/metabolismo , Insulina/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Receptor de Insulina/metabolismo , Receptor IGF Tipo 1/metabolismo , Masculino , Enfermedad de Alzheimer/metabolismo , Ratones Endogámicos C57BL , Radioisótopos de Yodo , Encéfalo/metabolismo , Tirfostinos/farmacología , Fragmentos de Péptidos/metabolismo , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único/métodos
3.
Clin Neuropharmacol ; 47(1): 26-28, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38193851

RESUMEN

OBJECTIVES: The objective of this case study is to raise awareness of potential 123 I-FP-CIT SPECT interference by lisdexafetamine dimesylate, a prodrug of d -amphetamine. METHODS: A 69-year-old man with Rapid Eye Movement sleep behavior disorder and mild cognitive impairment had been treated with lisdexafetamine dimesylate for attention-deficit/hyperactivity disorder. The patient had annual or biennial 123 I-FP-CIT SPECT evaluations after their baseline visit at 69 years old. Nigrostriatal dopamine transporter uptake was semiquantitatively evaluated with 123 I-FP-CIT SPECT using DaTQUANT 2.0 software. Lisdexafetamine dimesylate was discontinued 3 months before the sixth-year visit (76 years old) by his primary care provider. RESULTS: The patient had 4 123 I-FP-CIT SPECT scans with lisdexafetamine dimesylate and 2 scans after the discontinuation of lisdexafetamine dimesylate. The DaTQUANT z -scores of the putamen declined from -1.36 at the baseline visit to -3.02 at the fifth-year visit. After the discontinuation of lisdexafetamine dimesylate, DaTQUANT z -scores of the putamen increased to -0.63 at the sixth-year visit and remained in the normal range of -0.71 at the seventh-year visit. CONCLUSIONS: This case suggests that lisdexafetamine dimesylate may have a strong interference with 123 I-FP-CIT SPECT, decreasing the tracer binding to the dopamine transporter and presenting false positive results.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Tropanos , Masculino , Humanos , Anciano , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Tropanos/metabolismo , Tomografía Computarizada de Emisión de Fotón Único/métodos
4.
Brain ; 147(3): 980-995, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37804318

RESUMEN

Given the prevalence of dementia and the development of pathology-specific disease-modifying therapies, high-value biomarker strategies to inform medical decision-making are critical. In vivo tau-PET is an ideal target as a biomarker for Alzheimer's disease diagnosis and treatment outcome measure. However, tau-PET is not currently widely accessible to patients compared to other neuroimaging methods. In this study, we present a convolutional neural network (CNN) model that imputes tau-PET images from more widely available cross-modality imaging inputs. Participants (n = 1192) with brain T1-weighted MRI (T1w), fluorodeoxyglucose (FDG)-PET, amyloid-PET and tau-PET were included. We found that a CNN model can impute tau-PET images with high accuracy, the highest being for the FDG-based model followed by amyloid-PET and T1w. In testing implications of artificial intelligence-imputed tau-PET, only the FDG-based model showed a significant improvement of performance in classifying tau positivity and diagnostic groups compared to the original input data, suggesting that application of the model could enhance the utility of the metabolic images. The interpretability experiment revealed that the FDG- and T1w-based models utilized the non-local input from physically remote regions of interest to estimate the tau-PET, but this was not the case for the Pittsburgh compound B-based model. This implies that the model can learn the distinct biological relationship between FDG-PET, T1w and tau-PET from the relationship between amyloid-PET and tau-PET. Our study suggests that extending neuroimaging's use with artificial intelligence to predict protein specific pathologies has great potential to inform emerging care models.


Asunto(s)
Inteligencia Artificial , Aprendizaje Profundo , Neuroimagen , Tauopatías , Humanos , Proteínas Amiloidogénicas , Biomarcadores , Fluorodesoxiglucosa F18 , Neuroimagen/métodos , Tauopatías/diagnóstico por imagen
5.
Neurology ; 101(2): e178-e188, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37202168

RESUMEN

BACKGROUND AND OBJECTIVES: ß-Amyloid (Aß) plaques can co-occur with Lewy-related pathology in patients with dementia with Lewy bodies (DLB), but Aß load at prodromal stages of DLB still needs to be elucidated. We investigated Aß load on PET throughout the DLB continuum, from an early prodromal stage of isolated REM sleep behavior disorder (iRBD) to a stage of mild cognitive impairment with Lewy bodies (MCI-LB), and finally DLB. METHODS: We performed a cross-sectional study in patients with a diagnosis of iRBD, MCI-LB, or DLB from the Mayo Clinic Alzheimer Disease Research Center. Aß levels were measured by Pittsburgh compound B (PiB) PET, and global cortical standardized uptake value ratio (SUVR) was calculated. Global cortical PiB SUVR values from each clinical group were compared with each other and with those of cognitively unimpaired (CU) individuals (n = 100) balanced on age and sex using analysis of covariance. We used multiple linear regression testing for interaction to study the influences of sex and APOE ε4 status on PiB SUVR along the DLB continuum. RESULTS: Of the 162 patients, 16 had iRBD, 64 had MCI-LB, and 82 had DLB. Compared with CU individuals, global cortical PiB SUVR was higher in those with DLB (p < 0.001) and MCI-LB (p = 0.012). The DLB group included the highest proportion of Aß-positive patients (60%), followed by MCI-LB (41%), iRBD (25%), and finally CU (19%). Global cortical PiB SUVR was higher in APOE ε4 carriers compared with that in APOE ε4 noncarriers in MCI-LB (p < 0.001) and DLB groups (p = 0.049). Women had higher PiB SUVR with older age compared with men across the DLB continuum (ß estimate = 0.014, p = 0.02). DISCUSSION: In this cross-sectional study, levels of Aß load was higher further along the DLB continuum. Whereas Aß levels were comparable with those in CU individuals in iRBD, a significant elevation in Aß levels was observed in the predementia stage of MCI-LB and in DLB. Specifically, APOE ε4 carriers had higher Aß levels than APOE ε4 noncarriers, and women tended to have higher Aß levels than men as they got older. These findings have important implications in targeting patients within the DLB continuum for clinical trials of disease-modifying therapies.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad por Cuerpos de Lewy , Masculino , Humanos , Femenino , Enfermedad por Cuerpos de Lewy/patología , Péptidos beta-Amiloides/análisis , Estudios Transversales , Apolipoproteína E4/genética , Tomografía de Emisión de Positrones , Enfermedad de Alzheimer/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen
6.
Brain Commun ; 5(1): fcad021, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36844148

RESUMEN

Alterations of cerebral glucose metabolism can be detected in patients with isolated rapid eye movement sleep behaviour disorder, a prodromal feature of neurodegenerative diseases with α-synuclein pathology. However, metabolic characteristics that determine clinical progression in isolated rapid eye movement sleep behaviour disorder and their association with other biomarkers need to be elucidated. We investigated the pattern of cerebral glucose metabolism on 18F-fluorodeoxyglucose PET in patients with isolated rapid eye movement sleep behaviour disorder, differentiating between those who clinically progressed and those who remained stable over time. Second, we studied the association between 18F-fluorodeoxyglucose PET and lower dopamine transporter availability in the putamen, another hallmark of synucleinopathies. Patients with isolated rapid eye movement sleep behaviour disorder from the Mayo Clinic Alzheimer's Disease Research Center and Center for Sleep Medicine (n = 22) and age-and sex-matched clinically unimpaired controls (clinically unimpaired; n = 44) from the Mayo Clinic Study of Aging were included. All participants underwent 18F-fluorodeoxyglucose PET and dopamine transporter imaging with iodine 123-radiolabeled 2ß-carbomethoxy-3ß-(4-iodophenyl)-N-(3-fluoropropyl) nortropane on single-photon emission computerized tomography. A subset of patients with isolated rapid eye movement sleep behaviour disorder with follow-up evaluations (n = 17) was classified as isolated rapid eye movement sleep behaviour disorder progressors (n = 7) if they developed mild cognitive impairment or Parkinson's disease; or isolated rapid eye movement sleep behaviour disorder stables (n = 10) if they remained with a diagnosis of isolated rapid eye movement sleep behaviour disorder with no cognitive impairment. Glucose metabolic abnormalities in isolated rapid eye movement sleep behaviour disorder were determined by comparing atlas-based regional 18F-fluorodeoxyglucose PET uptake between isolated rapid eye movement sleep behaviour disorder and clinically unimpaired. Associations between 18F-fluorodeoxyglucose PET and dopamine transporter availability in the putamen were analyzed with Pearson's correlation within the nigrostriatal pathway structures and with voxel-based analysis in the cortex. Patients with isolated rapid eye movement sleep behaviour disorder had lower glucose metabolism in the substantia nigra, retrosplenial cortex, angular cortex, and thalamus, and higher metabolism in the amygdala and entorhinal cortex compared with clinically unimpaired. Patients with isolated rapid eye movement sleep behaviour disorder who clinically progressed over time were characterized by higher glucose metabolism in the amygdala and entorhinal cortex, and lower glucose metabolism in the cerebellum compared with clinically unimpaired. Lower dopamine transporter availability in the putamen was associated with higher glucose metabolism in the pallidum within the nigrostriatal pathway; and with higher 18F-fluorodeoxyglucose uptake in the amygdala, insula, and temporal pole on a voxel-based analysis, although these associations did not survive after correcting for multiple comparisons. Our findings suggest that cerebral glucose metabolism in isolated rapid eye movement sleep behaviour disorder is characterized by hypometabolism in regions frequently affected during the prodromal stage of synucleinopathies, potentially reflecting synaptic dysfunction. Hypermetabolism is also seen in isolated rapid eye movement sleep behaviour disorder, suggesting that synaptic metabolic disruptions may be leading to a lack of inhibition, compensatory mechanisms, or microglial activation, especially in regions associated with nigrostriatal degeneration.

7.
Bioconjug Chem ; 33(5): 892-906, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35420782

RESUMEN

Aberrant insulin signaling has been considered one of the risk factors for the development of Alzheimer's disease (AD) and has drawn considerable attention from the research community to further study its role in AD pathophysiology. Herein, we describe the development of an insulin-based novel positron emission tomography (PET) probe, [68Ga]Ga-NOTA-insulin, to noninvasively study the role of insulin in AD. The developed PET probe [68Ga]Ga-NOTA-insulin showed a significantly higher uptake (0.396 ± 0.055 SUV) in the AD mouse brain compared to the normal (0.140 ± 0.027 SUV) mouse brain at 5 min post injection and also showed a similar trend at 10, 15, and 20 min post injection. In addition, [68Ga]Ga-NOTA-insulin was found to have a differential uptake in various brain regions at 30 min post injection. Among the brain regions, the cortex, thalamus, brain stem, and cerebellum showed a significantly higher standard uptake value (SUV) of [68Ga]Ga-NOTA-insulin in AD mice as compared to normal mice. The inhibition of the insulin receptor (IR) with an insulin receptor antagonist peptide (S961) in normal mice showed a similar brain uptake profile of [68Ga]Ga-NOTA-insulin as it was observed in the AD case, suggesting nonfunctional IR in AD and the presence of an alternative insulin uptake route in the absence of a functional IR. The Gjedde-Patlak graphical analysis was also performed to predict the input rate of [68Ga]Ga-NOTA-insulin into the brain using MicroPET imaging data and supported the in vivo results. The [68Ga]Ga-NOTA-insulin PET probe was successfully synthesized and evaluated in a mouse model of AD in comparison with [18F]AV1451 and [11C]PIB to noninvasively study the role of insulin in AD pathophysiology.


Asunto(s)
Enfermedad de Alzheimer , Radioisótopos de Galio , Enfermedad de Alzheimer/diagnóstico por imagen , Animales , Compuestos Heterocíclicos con 1 Anillo , Insulina , Ratones , Tomografía de Emisión de Positrones/métodos , Receptor de Insulina
8.
J Nucl Med ; 63(11): 1748-1753, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35301239

RESUMEN

In tau PET, a reliable method to detect early tau accumulation in the brain is crucial. Noise, artifacts, and off-target uptake impede detection of subtle true-positive ligand binding. We hypothesize that identifying voxels with stable activity over time can enhance detection of true-positive tau. Methods: In total, 339 participants in the clinical spectrum ranging from clinically unimpaired to Alzheimer disease dementia underwent at least 2 serial tau PET scans with flortaucipir. The overlap index (OI) method was proposed to detect spatially identical, voxelwise SUV ratio (SUVR) elevation when seen sequentially in serial tau PET scans. The association of OI with tau accumulation, clinical diagnosis, and cognitive findings was evaluated. Results: OI showed good dynamic range in the low-SUVR window. Only OI was able to identify subgroups with increasing tau PET signal in low-SUVR meta-region-of-interest (ROI) groups. OI showed improved association with early clinical disease progression and cognitive scores versus meta-ROI SUVR measures. Conclusion: OI was more sensitive to tau signal elevation and longitudinal change than standard ROI measures, suggesting it is a more sensitive method for detecting early, subtle deposition of neurofibrillary tangles.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Proteínas tau/metabolismo , Reproducibilidad de los Resultados , Enfermedad de Alzheimer/metabolismo , Ovillos Neurofibrilares/metabolismo , Carbolinas , Tomografía de Emisión de Positrones , Disfunción Cognitiva/metabolismo
9.
Nat Aging ; 2(5): 412-424, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-37118071

RESUMEN

Brain aging is accompanied by patterns of functional and structural change. Alzheimer's disease (AD), a representative neurodegenerative disease, has been linked to accelerated brain aging. Here, we developed a deep learning-based brain age prediction model using a large collection of fluorodeoxyglucose positron emission tomography and structural magnetic resonance imaging and tested how the brain age gap relates to degenerative syndromes including mild cognitive impairment, AD, frontotemporal dementia and Lewy body dementia. Occlusion analysis, performed to facilitate the interpretation of the model, revealed that the model learns an age- and modality-specific pattern of brain aging. The elevated brain age gap was highly correlated with cognitive impairment and the AD biomarker. The higher gap also showed a longitudinal predictive nature across clinical categories, including cognitively unimpaired individuals who converted to a clinical stage. However, regions generating brain age gaps were different for each diagnostic group of which the AD continuum showed similar patterns to normal aging.


Asunto(s)
Enfermedad de Alzheimer , Aprendizaje Profundo , Enfermedades Neurodegenerativas , Humanos , Encéfalo/diagnóstico por imagen , Enfermedad de Alzheimer/diagnóstico por imagen , Envejecimiento
10.
J Neurosurg ; 135(6): 1771-1779, 2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-33990083

RESUMEN

OBJECTIVE: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an established neurosurgical treatment for the motor symptoms of Parkinson's disease (PD). While often highly effective, DBS does not always yield optimal therapeutic outcomes, and stimulation-induced adverse effects, including paresthesia, muscle contractions, and nausea/lightheadedness, commonly occur and can limit the efficacy of stimulation. Currently, objective metrics do not exist for monitoring neural changes associated with stimulation-induced therapeutic and adverse effects. METHODS: In the present study, the authors combined intraoperative functional MRI (fMRI) with STN DBS in 20 patients with PD to test the hypothesis that stimulation-induced blood oxygen level-dependent signals contained predictive information concerning the therapeutic and adverse effects of stimulation. RESULTS: As expected, DBS resulted in blood oxygen level-dependent activation in myriad motor regions, including the primary motor cortex, caudate, putamen, thalamus, midbrain, and cerebellum. Across the patients, DBS-induced improvements in contralateral Unified Parkinson's Disease Rating Scale tremor subscores correlated with activation of thalamic, brainstem, and cerebellar regions. In addition, improvements in rigidity and bradykinesia subscores correlated with activation of the primary motor cortex. Finally, activation of specific sensorimotor-related subregions correlated with the presence of DBS-induced adverse effects, including paresthesia and nausea (cerebellar cortex, sensorimotor cortex) and unwanted muscle contractions (caudate and putamen). CONCLUSIONS: These results suggest that DBS-induced activation patterns revealed by fMRI contain predictive information with respect to the therapeutic and adverse effects of DBS. The use of fMRI in combination with DBS therefore may hold translational potential to guide and improve clinical stimulator optimization in patients.

11.
Neurobiol Aging ; 99: 11-18, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33422890

RESUMEN

Reduced nigrostriatal uptake on N-(3-fluoropropyl)-2ß-carbomethoxy-3ß-(4-[123I]iodophenyl) nortropane (123I-FP-CIT) SPECT reflects dopamine dysfunction, while other imaging markers could be complementary when used together. We assessed how well 123I-FP-CIT SPECT differentiates dementia with Lewy bodies (DLBs) from Alzheimer's disease dementia (ADem) and whether multimodal imaging provides additional value. 123I-FP-CIT SPECT, magnetic resonance imaging, [18F]2-fluoro-deoxy-D-glucose-positron emission tomography (PET), and 11C-Pittsburgh compound B (PiB)-PET were assessed in 35 participants with DLBs and 14 participants with ADem (autopsy confirmation in 9 DLBs and 4 ADem). Nigrostriatal dopamine transporter uptake was evaluated with 123I-FP-CIT SPECT using DaTQUANT software. Hippocampal volume was calculated with magnetic resonance imaging, cingulate island sign ratio with FDG-PET, and global cortical PiB retention with PiB-PET. The DaTQUANT z-scores of the putamen showed the highest c-statistic of 0.916 in differentiating DLBs from ADem among the analyzed imaging biomarkers. Adding another imaging modality to 123I-FP-CIT SPECT had c-statistics ranging from 0.968 to 0.975, and 123I-FP-CIT SPECT in combination with 2 other imaging modalities presented c-statistics ranging from 0.987 to 0.996. These findings suggest that multimodal imaging with 123I-FP-CIT SPECT aids in differentiating DLBs and ADem and in detecting comorbid Lewy-related and Alzheimer's disease pathology in patients with DLBs and ADem.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Enfermedad por Cuerpos de Lewy/diagnóstico por imagen , Imagen Multimodal/métodos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Diagnóstico Diferencial , Femenino , Humanos , Radioisótopos de Yodo , Imagen por Resonancia Magnética , Masculino , Tomografía de Emisión de Positrones , Radiofármacos , Programas Informáticos , Tropanos
12.
Neurology ; 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33408148

RESUMEN

OBJECTIVE: To determine the clinical phenotypes associated with the amyloid-ß PET and dopamine transporter imaging (123I-FP-CIT SPECT) findings in mild cognitive impairment (MCI) with the core clinical features of dementia with Lewy bodies (DLB; MCI-LB). METHODS: Patients with MCI who had at least one core clinical feature of DLB (n=34) were grouped into ß-amyloid A+ or A- and 123I-FP-CIT SPECT D+ or D- groups based on previously established abnormality cut points for A+ with Pittsburgh compound-B PET standardized uptake value ratio (PiB SUVR) ≥1.48 and D+ with putamen z-score with DATQUANT < -0.82 on 123I-FP-CIT SPECT. Individual MCI-LB patients fell into one of four groups: A+D+, A+D-, A-D+, or A-D-. Log transformed PiB SUVR and putamen z-score were tested for associations with patient characteristics. RESULTS: The A-D+ biomarker profile was most common (38.2%) followed by A+D+ (26.5%) and A-D- (26.5%). Least common was A+D- biomarker profile (8.8 %). The A+ group was older, had a higher frequency of APOE ε4 carriers, and a lower MMSE score than the A- group. The D+ group was more likely to have probable rapid eye movement sleep behavior disorder. Lower putamen DATQUANT z-scores and lower PiB SUVRs were independently associated with higher Unified Parkinson Disease Rating Scale (UPDRS)-III scores. CONCLUSIONS: A majority of MCI-LB patients are characterized by low amyloid-ß deposition and reduced dopaminergic activity. Amyloid-ß PET and 123I-FP-CIT SPECT are complementary in characterizing clinical phenotypes of patients with MCI-LB.

13.
Neuroimage ; 224: 117357, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32916285

RESUMEN

Functional MRI (fMRI) has become an important tool for probing network-level effects of deep brain stimulation (DBS). Previous DBS-fMRI studies have shown that electrical stimulation of the ventrolateral (VL) thalamus can modulate sensorimotor cortices in a frequency and amplitude dependent manner. Here, we investigated, using a swine animal model, how the direction and orientation of the electric field, induced by VL-thalamus DBS, affects activity in the sensorimotor cortex. Adult swine underwent implantation of a novel 16-electrode (4 rows x 4 columns) directional DBS lead in the VL thalamus. A within-subject design was used to compare fMRI responses for (1) directional stimulation consisting of monopolar stimulation in four radial directions around the DBS lead, and (2) orientation-selective stimulation where an electric field dipole was rotated 0°-360° around a quadrangle of electrodes. Functional responses were quantified in the premotor, primary motor, and somatosensory cortices. High frequency electrical stimulation through leads implanted in the VL thalamus induced directional tuning in cortical response patterns to varying degrees depending on DBS lead position. Orientation-selective stimulation showed maximal functional response when the electric field was oriented approximately parallel to the DBS lead, which is consistent with known axonal orientations of the cortico-thalamocortical pathway. These results demonstrate that directional and orientation-selective stimulation paradigms in the VL thalamus can tune network-level modulation patterns in the sensorimotor cortex, which may have translational utility in improving functional outcomes of DBS therapy.


Asunto(s)
Estimulación Encefálica Profunda , Corteza Motora/fisiología , Vías Nerviosas/fisiología , Núcleo Subtalámico/fisiología , Animales , Estimulación Encefálica Profunda/métodos , Estimulación Eléctrica/métodos , Femenino , Imagen por Resonancia Magnética/métodos , Porcinos , Tálamo/fisiología , Núcleos Talámicos Ventrales/fisiología
14.
Artículo en Inglés | MEDLINE | ID: mdl-33362946

RESUMEN

Background: Non-invasive peripheral nerve stimulation, also referred to as transcutaneous afferent patterned stimulation (TAPS), reduces hand tremor in essential tremor (ET) subjects. However, the mechanism of action of TAPS is unknown. Here, we investigated changes in brain metabolism over three months of TAPS use in ET subjects. Methods: This was an interventional, open label, single group study enrolling 5 ET subjects. They received 40 minutes of TAPS treatment twice daily for 90 days. Brain metabolic activity and tremor severity were measured using 18F-fluorodeoxyglucose (FDG) PET/CT, and the Tremor Research Group Essential Tremor Rating Assessment Scale (TETRAS), respectively, at baseline and after 90 days. Tremor power and frequency was measured before and after all TAPS sessions using an onboard three-axis accelerometer. Results: FDG PET/CT revealed areas of hypermetabolism in ipsilateral cerebellar hemisphere and hypometabolism in contralateral cerebellar hemisphere following 90 days of TAPS treatment, compared to day one (uncorrected p value <0.05). Paired pre-post kinematic measurements over 90 days showed significantly decreased tremor power (p < 0.0001) but no change in tremor frequency. The TETRAS score on day 1 decreased from 6.5 ± 2.5 to 4.1 ± 1.8 following TAPS (p = 0.05). The pre-post TETRAS scores on day 90: 4.9 ± 1.5 and 4.1± 1 were lower than pre-TAPS TETRAS score on day 1 (p = 0.14 and 0.05, respectively). Conclusions: Our results suggest that longitudinal TAPS of the median and radial nerves modulates brain metabolism in areas instrumental to motor coordination and implicated in ET. Clinically, TAPS reduced tremor power, but had no effect on tremor frequency. This study paves the way for comprehensive studies in larger cohorts to further elucidate the mechanism of TAPS. Highlights: Non-invasive peripheral nerve stimulation, also referred to as transcutaneous afferent patterned stimulation (TAPS), reduces hand tremor in essential tremor subjects. Longitudinal TAPS therapy alters cerebellar metabolism, which can be a cause or consequence of tremor reduction. Cerebellar-premotor region connectivity may play a role in the anti-tremor effects of TAPS.


Asunto(s)
Cerebelo/diagnóstico por imagen , Terapia por Estimulación Eléctrica/métodos , Temblor Esencial/terapia , Nervio Mediano , Nervio Radial , Vías Aferentes , Anciano , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Cerebelo/metabolismo , Temblor Esencial/diagnóstico por imagen , Temblor Esencial/metabolismo , Femenino , Fluorodesoxiglucosa F18 , Mano , Humanos , Masculino , Persona de Mediana Edad , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos , Resultado del Tratamiento
15.
J Neurol ; 267(9): 2603-2611, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32388831

RESUMEN

OBJECTIVE: To describe 123I-FP-CIT (DAT scan) SPECT findings in progressive apraxia of speech (PAOS) patients and to compare those findings with progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS). BACKGROUND: PAOS is a neurodegenerative syndrome in which patients present with apraxia of speech, a motor speech disorder affecting programming and planning of speech. Patients with PAOS predictably develop Parkinsonism. DAT scan is a neuroimaging tool that assesses the integrity of presynaptic dopamine transporters in striatum and is usually abnormal in PSP and CBS. METHODS: As part of an NIH-funded grant, we performed a DAT scan on 17 PAOS patients early in the disease course. DaTQUANT software was used to quantify uptake in the left and right caudate and anterior/posterior putamen, with striatum to background ratios (SBRs). The PAOS cohort was compared to 15 PSP and 8 CBS patients. RESULTS: Five PAOS patients (29%) showed abnormalities in at least one striatal region on DAT scan. When the five PAOS patients with abnormal DAT were compared to the PSP and CBS patients, the only difference observed was lower uptake in the posterior putamen in PSP (p = 0.03). There were no differences is putamen/caudate ratio or in symmetry of uptake, across all groups. There was also no difference in MDS-UPDRS-III scores between PAOS patients with and without abnormal DAT scans (p = 0.56). CONCLUSIONS: Abnormal DAT scan is observed early in the disease course in approximately 30% of PAOS patients, with striatal abnormalities similar to those in PSP and CBS.


Asunto(s)
Apraxias , Receptores Dopaminérgicos , Apraxias/diagnóstico por imagen , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Humanos , Radioisótopos de Yodo , Nortropanos , Habla , Tomografía Computarizada de Emisión de Fotón Único , Tropanos
16.
Sci Rep ; 10(1): 7528, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32372021

RESUMEN

Deep brain stimulation (DBS) has been shown to be an effective treatment for movement disorders and it is now being extended to the treatment of psychiatric disorders. Functional magnetic resonance imaging (fMRI) studies indicate that DBS stimulation targets dependent brain network effects, in networks that respond to stimulation. Characterizing these patterns is crucial for linking DBS-induced therapeutic and adverse effects. Conventional DBS-fMRI, however, lacks the sensitivity needed for decoding multidimensional information such as spatially diffuse patterns. We report here on the use of a multivariate pattern analysis (MVPA) to demonstrate that stimulation of three DBS targets (STN, subthalamic nucleus; GPi, globus pallidus internus; NAc, nucleus accumbens) evoked a sufficiently distinctive blood-oxygen-level-dependent (BOLD) activation in swine brain. The findings indicate that STN and GPi evoke a similar motor network pattern, while NAc shows a districted associative and limbic pattern. The findings show that MVPA could be effectively applied to overlapping or sparse BOLD patterns which are often found in DBS. Future applications are expected employ MVPA fMRI to identify the proper stimulation target dependent brain circuitry for a DBS outcome.


Asunto(s)
Encéfalo/diagnóstico por imagen , Estimulación Encefálica Profunda , Procesamiento de Imagen Asistido por Computador/métodos , Sistema Límbico/diagnóstico por imagen , Corteza Motora/diagnóstico por imagen , Reconocimiento de Normas Patrones Automatizadas , Animales , Mapeo Encefálico , Electrodos , Globo Pálido , Imagen por Resonancia Magnética , Análisis Multivariante , Núcleo Accumbens/metabolismo , Oxígeno/metabolismo , Porcinos
17.
J Nucl Med ; 61(11): 1628-1635, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32198310

RESUMEN

Our rationale was to conduct a retrospective study comparing 3 123I-N-ω-fluoropropyl-2ß-carbomethoxy-3ß-(4-iodophenyl)nortropane (123I-FP-CIT) SPECT quantitative methods in patients with neurodegenerative syndromes as referenced to neuropathologic findings. Methods:123I-FP-CIT-SPECT and neuropathologic findings among patients with neurodegenerative syndromes from the Mayo Alzheimer Disease Research Center and Mayo Clinic Study of Aging were examined. Three 123I-FP-CIT SPECT quantitative assessment methods-MIMneuro, DaTQUANT, and manual region-of-interest creation on a workstation-were compared with neuropathologic findings describing the presence or absence of Lewy body disease (LBD). Striatum-to-background ratios (SBRs) generated by DaTQUANT were compared with the calculated SBRs of the manual method and MIMneuro. The left and right SBRs for caudate, putamen, and striatum were evaluated with the manual method. For DaTQUANT and MIMneuro, the left, right, total, and average SBRs and z scores for whole striatum, caudate, putamen, anterior putamen, and posterior putamen were calculated. Results: The cohort included 24 patients (20 [83%] male, mean age for all patients at death, 75.4 ± 10.0 y). The antemortem clinical diagnoses were Alzheimer disease dementia (n = 6), probable dementia with Lewy bodies (n = 12), mixed Alzheimer disease dementia and probable dementia with Lewy bodies (n = 1), Parkinson disease with mild cognitive impairment (n = 2), corticobasal syndrome (n = 1), idiopathic rapid-eye-movement sleep behavior disorder (n = 1), and behavioral-variant frontotemporal dementia (n = 1). Seventeen (71%) had LBD. All 3 123I-FP-CIT SPECT quantitative methods had an area under the receiver-operating-characteristics curve ranging from more than 0.93 to up to 1.000 (P < 0.001) and showed excellent discrimination between LBD and non-LBD patients in each region assessed (P < 0.001). There was no significant difference between the accuracy of the regions in discriminating the 2 groups, with good discrimination for both caudate and putamen. Conclusion: All 3 123I-FP-CIT SPECT quantitative methods showed excellent discrimination between LBD and non-LBD patients in each region assessed, using both SBRs and z scores.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Radioisótopos de Yodo , Enfermedad por Cuerpos de Lewy/diagnóstico por imagen , Enfermedad de Parkinson/diagnóstico por imagen , Tomografía Computarizada de Emisión de Fotón Único/métodos , Tropanos , Anciano , Anciano de 80 o más Años , Cuerpo Estriado/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
18.
Alzheimers Dement ; 16(3): 561-571, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31784374

RESUMEN

INTRODUCTION: Comparison of tau (flortaucipir) positron emission tomography (FTP-PET) to autopsy is important to demonstrate the relationship of FTP-PET to neuropathologic findings. METHODS: Autopsies were performed on 26 participants who had antemortem FTP-PET. FTP-PET standardized uptake value ratios (SUVRs) were compared to autopsy diagnoses and Braak tangle stage. Quantitative tau burden was compared to regional FTP-PET signal. RESULTS: Participants with Braak stages of IV or greater had elevated FTP-PET signal. FTP-PET was elevated in participants with Alzheimer's disease. An FTP-PET SUVR cut point of 1.29 was determined to be optimal. Quantitative measurements of hippocampal and temporal lobe tau burden were highly correlated to FTP-PET signal (rho's from 0.61 to 0.70, P ≤ .02). DISCUSSION: Elevated FTP-PET reflects Braak IV or greater neuropathology. Participants with primary age-related tauopathy and hippocampal sclerosis did not show elevated FTP-PET signal. Secondary neuropathologic diagnoses of Alzheimer's disease neuropathologic change can lead to borderline elevated FTP-PET signal.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Tomografía de Emisión de Positrones , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Autopsia , Encéfalo/patología , Femenino , Humanos , Masculino
19.
Front Neurosci ; 13: 1109, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31708723

RESUMEN

The Papez circuit, including the fornix white matter bundle, is a well-known neural network that is involved in multiple limbic functions such as memory and emotional expression. We previously reported a large-animal study of deep brain stimulation (DBS) in the fornix that found stimulation-induced hemodynamic responses in both the medial limbic and corticolimbic circuits on functional resonance imaging (fMRI) and evoked dopamine responses in the nucleus accumbens (NAc), as measured by fast-scan cyclic voltammetry (FSCV). The effects of DBS on the fornix are challenging to analyze, given its structural complexity and connection to multiple neuronal networks. In this study, we extend our earlier work to a rodent model wherein we characterize regional brain activity changes resulting from fornix stimulation using fludeoxyglucose (18F-FDG) micro positron emission tomography (PET) and monitor neurochemical changes using FSCV with pharmacological confirmation. Both global functional changes and local changes were measured in a rodent model of fornix DBS. Functional brain activity was measured by micro-PET, and the neurochemical changes in local areas were monitored by FSCV. Micro-PET images revealed increased glucose metabolism within the medial limbic and corticolimbic circuits. Neurotransmitter efflux induced by fornix DBS was monitored at NAc by FSCV and identified by specific neurotransmitter reuptake inhibitors. We found a significant increase in the metabolic activity in several key regions of the medial limbic circuits and dopamine efflux in the NAc following fornix stimulation. These results suggest that electrical stimulation of the fornix modulates the activity of brain memory circuits, including the hippocampus and NAc within the dopaminergic pathway.

20.
Brain Behav ; 9(12): e01431, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31697455

RESUMEN

INTRODUCTION: While the clinical efficacy of deep brain stimulation (DBS) the treatment of motor-related symptoms is well established, the mechanism of action of the resulting cognitive and behavioral effects has been elusive. METHODS: By combining functional magnetic resonance imaging (fMRI) and DBS, we investigated the pattern of blood-oxygenation-level-dependent (BOLD) signal changes induced by stimulating the nucleus accumbens in a large animal model. RESULTS: We found that diffused BOLD activation across multiple functional networks, including the prefrontal, limbic, and thalamic regions during the stimulation, resulted in a significant change in inter-regional functional connectivity. More importantly, the magnitude of the modulation was closely related to the strength of the inter-regional resting-state functional connectivity. CONCLUSIONS: Nucleus accumbens stimulation affects the functional activity in networks that underlie cognition and behavior. Our study provides an insight into the nature of the functional connectivity, which mediates activation effect via brain networks.


Asunto(s)
Cognición/fisiología , Núcleo Accumbens/fisiología , Animales , Encéfalo/fisiología , Mapeo Encefálico/métodos , Estimulación Encefálica Profunda/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Modelos Animales , Conducción Nerviosa/fisiología , Sus scrofa , Porcinos , Tálamo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...